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Abstract: Increased number of patients affected by metabolic syndrome (MS) has prompted the necessity of better understanding
what is involved in such syndrome. Nevertheless, the establishment of promising therapies depends on the knowledge about the
interaction of molecules within MS. In such context, Nitric Oxide (NO) emerges from a bulk of works relating its roles on aspects of
MS, including cardiovascular diseases, their symptoms and comorbidities, which are thought to be triggered by similar sources. NO,
nitric oxide synthase and enzymatic chains are keys for those disease and symptoms processes. NO has been separately described as
part of hypertensive, ischemic and pain signaling. Although there are similar pathways likely shared for generating cardiovascular
symptoms such angina, they are barely associated to NO in literature. The present review aims to clarify the patterns of NO alteration
in metabolic syndrome directly concerned to cardiovascular symptoms, especially angina.
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1. INTRODUCTION

Angina is the prominent symptom of coronary heart disease (CHD), a condition, among others that describes one of
the main disorders related to metabolic syndrome (MS). This syndrome is accepted to be an association among obesity,
hypertension, dyslipidemia, glucose metabolism alteration (glucose intolerance, insulin resistance or diabetes type II)
and  responsible  for  the  higher  risk  of  cardiovascular  diseases  [1].  Studies  around  the  world  have  been  observing
individuals with MS presenting inferior prognosis and sharp mortality when comparing with non-MS patients [2 - 6].

Multicenter studies have demonstrated the Nitric Oxide (NO) influences in cardiovascular system. Even though
hypertension, vascular diseases and metabolic syndrome have been related to important symptom such as angina, the
absence  or  deviations  in  NO  signaling  are  scarcely  related  to  cardiovascular  disease  and/or  their  symptoms.  The
importance of this association consists of NO controlling relevant functions such as neurotransmission [7, 8], vascular
tone [9, 10], gene transcription [9, 10], mRNA translation [11, 12] and post-translational modifications of proteins [13,
14]. Overall, despite the lacking of association in literature, NO plays a trivial role in angina.

The  main  damages  involved  on  the  NO  signaling  are  related  to  oxidative  stress  and  the  development  of  the
components  predisposing  MS  and  its  symptoms.  In  the  present  review,  we  sought  to  clarify  the  patterns  of  NO
alteration in metabolic syndrome directly concerned to cardiovascular symptoms, especially angina.

2. THE GENERATION OF NITRIC OXIDE

NO  is  produced  from  dietary  sources  via  Nitrate-Nitrite-NO  pathway  or  from  endogenous  turnover.  The  main
differences between these pathways are basically the enzymes, the substrates, respectively nitrate  and L-arginine, and
the  requirement of  molecular oxygen (O2) for  NO turnover  pathway. Even  though  there are  two processes, they  are
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linked  by  the  reduction  of  endogenously  produced  NO,  which  provides  the  largest  endocrine  source  of  directly
bioavailable NO to inorganic nitrite (NO2

−) [15].

The NO synthesis from dietary intake is dependent on xanthine oxidoreductase (XOR). Among other functions,
XOR is  a  major  NO2

−  reductase  enzyme linked  to  cellular  NO signaling  events  [16  -  33]  Fig.  (1).  This  enzyme is
essential for nitrate (NO3

−) use from diet.

Fig.  (1).  Physiological  Nitric  Oxide  (NO) formation pathways.  NO production  using  xanthine  oxidoreductase  (XOR) can  be
synchronized with nitric oxide synthase (NOS). NO turnover pathway is dependent on co-substracts as molecular oxygen (O2) and
NADPH and cofactors such flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), tetrahydrobiopterin (BH4), heme and
binding calmodulin (CAL) for NO synthesis.

In other way, NO produced from L-arginine requires an enzyme called nitric oxide synthase (NOS). There are three
classical isoforms: endothelial (eNOS), neuronal (nNOS) and inducible (iNOS). These isoenzymes are derived from
different  genes  and  trigger  diverse  organic  processes  [34].  eNOS  and  nNOS  are  constitutively  expressed  and  are
dependent  on  Ca2+  for  activation.  In  contrast,  iNOS  is  usually  expressed  in  proinflammatory  processes  and  Ca2+

independent [35 -  43].  Besides the classical,  there is a novel NOS isoform, mitochondrial  NOS (mtNOS), which is
present  in  mitochondria  [44 -  46]  and appears  to  regulate  cellular  oxygen consumption/energy metabolism without
engendering oxidative stress [47, 48]. Positive vascular effects are well established as mediated by cellular pathways of
NOS/L-arginine NO signaling [35, 49].

As almost all enzymes, NOS isoforms require cofactors. Tetrahydrobiopterin (BH4) is one of the critical cofactors
for NOS activity. In conditions that will be approached in this article such as hypertension, BH4 is oxidized leading to
NOS uncoupling [50, 51], increased Reactive Oxygen Species (ROS) and reduced NO production due to an electron
flowing through the enzyme (Fig. 2).

3. NITRIC OXIDE INFLUENCES

NO acts on a number of protein targets through cell signaling. One of the most important physiological signaling is
the activation of soluble guanylyl cyclase (GC) and the generation of cyclic guanosine monophosphate (cGMP) [9, 10,
52 - 55], especially for neurotransmission and vascular tonus functions. The transduction for the NO signaling is given
by its reaction with superoxide anion (O2

−•), resulting in NO inactivation and potent oxidant peroxynitrite (ONOO−)
formation. This compound causes oxidative damage, nitration, and S-nitrosylation of biomolecules including protein,
lipids, and DNA [56, 57]. These damages are primordial to the development of the components predisposing MS and its
symptoms, causing respectively hypertension and pain.
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Fig. (2). NOS isoforms and reactive oxygen species (ROS) production through electron flowing. A) NOS enzyme schematic
structure with main cofactors. B) Normal electron flowing in NOS enzyme: electron from flavin derived cofactors goes to Heme
domain together with, but faster than, the electron transfer from BH4; however, before the next catalytic cycle can proceed, the BH4
has to be reduced. These oxidations lead to limitation of ROS production. C: electron flowing through NOS enzyme in hypertension:
there is a disruption in BH4 oxidation, leading to NOS uncoupling, reduced no production and, consequently, increased ROS.

3.1. NO Pathway in Pain

The cardiovascular system functions reported on this article relies on blood circulation; namely, the association of
angina and hypertension regarding nervous systems and blood circulation influenced by NO. In this sense, the expected
NO  functioning  in  the  sensory  perception  of  pain  signaling  and  explanation  are  based  on  biochemical  processes
depicted on (Fig. 3).

The  integrity  of  nervous  system is  essential  for  pain  protective  functions.  Processes  responsible  for  converting
sensory  stimuli  to  cellular  transduction,  enabling  the  recognition  and  characterization  of  the  signal,  modulate  the
frequency, rate and extent of the sensory perception of pain. Together with the NOS isoforms, glutamate receptor is
involved in some of the important signaling processes [58]. Even though these proteins are reported to be associated to
the  regulation  of  sensory  perception  of  pain,  it  is  still  unlinked,  according  to  resources  for  “protein”  search  at  the
National Center for Biotechnology Information (NCBI) database [59], if they are positive or negative regulators or even
part of the modulation of pain.

The usual NO pain pathway is showed on Fig. (3). However, how the NOS isoforms, mainly nNOS, are related to
heart pain and the mechanism by which NO can sensitize the neuronal path to trigger the perception of pain remain
partially unknown. Visceral and neuropathic are the main types of pain correlated to NO and ischemia, the principal
cause of heart pain. Both pathways are nociceptors-sensitized on primary afferent C fibers, where the action potential is
conducted to the central nervous and to secondary afferent neurons in spinal-cord dorsal horn. Then, the signal reaches
areas of the brain responsible for localization and emotional aspects of pain, respectively, through spinothalamic and
spinoreticular tracts. The main difference between visceral and neuropathic pain resides on the type of stimuli for which
they respond to. Smooth muscle distension or contraction, capsule stretching surrounding an organ, ischemia, necrosis
or inflammatory mediators trigger visceral pain; dissimilarly, the triggers for neuropathic pain pathway are trauma,
surgery, diabetes mellitus, chemotherapy, radiotherapy, infection, malignancy and ischemia in which the damage occurs
directly to central or peripheral nervous system [60].
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Excluding  nociception  stimuli  from extra  cardiac  issues,  the  main  etiology  for  angina  is  ischemia.  Intermittent
ischemia  in  focal  myocardial  regions  might  result  into  functional  alterations  for  both  efferent  and  afferent  cardiac
adrenergic,  and  possibly  vagal,  nerve  fibers.  Additional  mechanisms  such  as  metabolic  abnormalities  might  also
adversely affect cardiac nerve fiber function [61, 62]. Cardiac stimuli are usually unable to elicit a painful response
through  afferent  nerve  fibers  due  to  their  low-sensitiveness;  however,  the  fibers  sensitivity  to  cardiac  stimuli  is
increased if there are functional alterations, such the ones caused by ischemia. Therefore, the result is a painful response
and consequent greater cardiac pain perception. This process is similar to cutaneous hyperalgesia due to peripheral
sympathetic  fiber  injury  described  in  literature  [63].  Overall,  impaired  myocardial  circulation  generates  ischemia
stimulating the nociceptive pathway.

In order to elucidate the relationship between NO and angina, there are numerous studies with pharmacological
approaches based on biotechnology researches applying knockout NOS mice [64 - 82]. Several studies have related
drugs based on NO mechanisms and their influences on pain or ischemic signals.

Fig.  (3).  Nociceptive  sensitization  related  to  NO/ROS  cascade.  Neurotransmitter  glutamate  is  secreted  from  the  nociceptor
terminal to the synaptic cleft and sensitizes AMPA receptors (AMPAr) on dorsal horn cells membrane. In long-term, the changes in
membrane polarization affect the NMDA receptors (NMDAr). NMDAr sensitization allows the Ca+2 influx, which is essential to the
neuronal Nitric Oxide Synthase (nNOS) activation. The nNOS activation is possible only if the inactive nNOS has all the cofactors
(FAD, FMN, L-arginine and BH4) dimerized. For this, a lesion also increases the GTP cyclohydrolase (GCH1) levels, enhancing
BH4. Ultimately, NO produced in the dorsal horn cells are released back into the synaptic cleft for closing guanyl synthase-induced
K+ channels and for releasing Substance P. Respectively, the results are the opiate resistance in chronic pain and neural remodeling
and hypersensitization.

In this sense, the development of NOS inhibitors was one of the first pharmacological approaches. Regarded as a
therapy,  since chronic pain patients  showed a significant  increase in NO plasma levels  in comparison with healthy
individuals [83], methylene blue (MB) is the most studied drug affecting NO mechanisms [64 - 73, 82]. MB directly
inhibits constitutive and inducible NOS [65] through cGMP accumulation avoidance by GC enzyme blockage [65, 66].
A valuable property of MB is its antioxidant effects [66]; it acts inhibiting the formation of free oxygen radicals and O2
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by  competing  with  molecular  oxygen  (O2).  Therefore,  the  transfer  of  electrons  by  xanthine  oxidase  (XO)  [68]  is
prevented. Studies have demonstrated MB decreasing pain levels in patients with chronic therapy-resistant neuropathic
pain on the first 2 days after administration [69, 74].

Complementarily, studies using knockout mice analyzed NOS absence. In 2008, Nakata et al. [75] demonstrated
NOS  isoforms  knockout  mice  in  conditions  of  hypertension,  hyperlipidemia,  impaired  glucose  tolerance,  insulin
resistance, metabolic syndrome and presence of visceral obesity. In fact, targeted disruption of NOS genes leads to
mutant mice development and allows a better understanding of NO mechanisms related to blood pressure regulation,
endothelial  dysfunction,  response  to  vascular  injury,  response  to  stroke  and  cerebral  ischemia,  diet-induced
atherosclerosis and cardiac contractility [76]. Results from such researches have shown the deletion of the eNOS gene
led to increase blood pressure [84,  85].  Other studies analyzed the phenotype of nNOS knockout mice and noticed
stomachs enlargement, several times bigger than normal size, demonstrating nNOS role in smooth muscle relaxation of
the pyloric sphincter. nNOS knockout mice were also resistant to focal and global cerebral ischemia, consistent as a part
of nNOS-derived NO function in cellular ischemic injury [76 - 80]. nNOS gene deletion has also been associated with
more severe left ventricular remodeling after myocardial infarction [81].

3.2. NO Influences in Hypertension and Angina

According to data from the World Health Organization (WHO), cardiovascular diseases killed 17.5 million people
in 2012, which are 3 in every 10 deaths globally distributed. Of these, 7.4 million people died due to ischemia and 1.1
million due to hypertensive heart diseases [86]. Both, ischemic and hypertensive heart diseases are directly influenced
by  coronary  heart  dysfunctions,  which  causes  their  usual  symptom:  angina  [87].  In  addition,  one  of  the  main
prescriptions to patients with angina is glyceryl trinitrate, which belongs to the nitrates chemical group responsible for
vasodilatation and consequent blood pressure decreasing.

There are many evidences on literature about the roles of NOS and cytochrome C (Cyt-C) in cardiovascular diseases
[36, 75, 88 - 92]. The NOS influences on blood pressure and circulation vary depending on the type of the isoform.
Nonetheless,  Cyt-C is  known to  be  part  of  NO production  in  strictly  hypoxic  conditions,  such as  ischemic  angina.
Despite  these  two  well-studied  proteins,  there  is  a  lack  of  evidence  about  what  other  factors  are  involved  in  such
disrupted cardiovascular systems. In summary, it is possible only to correlate Cyt-C and NOS as part of the NO role in
hypertension and angina.

The three NOS isoforms are active on cardiovascular system; however, the main enzymes related to hypertension
and angina are eNOS and nNOS. iNOS contributes mostly to the pathophysiology of inflammatory diseases and septic
shock [55, 75, 93].

NO produced  by  nNOS in  nitrergic  nerves  is  considered  as  a  neurotransmitter  responsible  for  stimulating  NO-
sensitive GC in its effector cells, thereby decreasing the tone of various types of smooth muscle including blood vessels
[55,  94,  95].  nNOS functions include synaptic plasticity in the central  nervous system (CNS),  central  regulation of
blood pressure, smooth muscle relaxation and vasodilatation via peripheral nitrergic nerves [55]. Most importantly,
nNOS plays  a  role  in  the  regulation  of  vascular  tone  independent  of  effects  from nNOS in  the  CNS [94,  95].  The
blockage of nNOS activity in the medulla and hypothalamus causes systemic hypertension [96].

Complementarily, eNOS-derived NO dilates all types of blood vessels by stimulating soluble GC and increasing
cGMP in smooth muscle cells [9, 10, 84]. NO from eNOS is a homeostatic regulator keeping blood vessels dilated,
blood pressure, vasoprotection and anti-atherosclerotic effects. Although mostly expressed in endothelial cells, eNOS
has also been detected in cardiomyocytes [94, 95]. Pharmacologically, vascular oxidative stress can be reduced and
eNOS functionality restored with both renin- and angiotensin II- inhibitors and AT1 receptor blockers, and also with
statins [55]. There are eNOS stimulators, the classic class of drugs for treating hypertension and myocardial infarction
[35, 55, 97]. This choice for treatment is due to the powerful protective effect of eNOS-derived NO against the onset of
atherogenesis. In short, NO from eNOS possesses the following effects: inhibition of platelet aggregation, vascular wall
adhesion  [98  -  100]  and  leucocyte  adhesion  to  the  vessel  wall  which  are  early  events  in  the  development  of
atherosclerosis; representing a critical factor for adaptive vascular remodeling to chronicle changes in blood flow [101];
controlling expression of genes involved in atherogenesis and angiogenesis post-ischemia [102]. The abrupt reduction
on the bioavailability of eNOS-derived NO is observed after experimental myocardial infarction and in humans under
heart failure condition [103, 104], contributing to impaired neovascularization [105]. Accordingly, endothelial NO can
reduce the chances of angina episodes, once their effects are also correlated to ischemic-related angina.
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Overall, nNOS and eNOS may have distinct roles in the physiological regulation of human microvascular tone in
vivo  [106].  Interestingly,  low levels  of  nNOS have  been  shown  in  vascular  smooth  muscle  cells  as  responsible  to
preserve some degree of vasodilatation when the predominant eNOS becomes dysfunctional [55, 107].

Hypertensive patients with metabolic syndrome and also patients with vascular diseases such as atherosclerosis
show endothelial dysfunction due to reduced NO bioavailability and consequently impaired endothelium-dependent
vasodilatation  [108]  associated  with  increased  ROS  production.  There  are  several  enzymatic  systems  potentially
producing  ROS  in  the  vessels,  including  the  Nicotinamide  Adenine  Dinucleotide  Phosphate  Hydrogen  (NADPH)
oxidases,  XO  mitochondrial  respiratory  chain,  uncoupled  eNOS  [109]  and  nNOS  [110  -  116].  Of  these,  NADPH
oxidases are considered primary importance for ROS generation. Several isoforms of O2

−•-producing NADPH oxidase
are expressed in endothelial and smooth muscle cells, as well as in the adventitia layer [55].

The eNOS and nNOS produce large amounts of ROS when deprived of their critical cofactor BH4 or their substrate
L-arginine [110 - 116]. An important stage of the electron transfer occurs in the Heme domain, which receives electron
and enables oxygen binding. The reduction directly to the Heme domain is faster than Flavin reduction through the BH4

cofactor. Despite this faster process, the catalytic cycle can only proceed if BH4 was reduced. This difference leads to
limitation of the reduced oxygen species productions by heme reduction. In hypertensive vessels Fig. (2), the disruption
in  electron  flowing  rather  results  in  reduction  of  O2  at  the  prosthetic  heme  site  than  formation  of  NO  [117].  The
importance of the O2

−• formation is due to the BH4 oxidation. Some in vivo studies [118] provided a mechanism for the
predisposition to atherosclerosis suggesting NADPH oxidase as the initial source of ROS leading to BH4 oxidation.
Endothelial and vascular smooth muscle cells-derived NADPH oxidase produces superoxide, respectively in early and
advanced atherosclerosis stages [119]. Despite this knowledge, Laursen et al. [120] described ONOO− as more potent
BH4  oxidant  than  O2

−•  in  hypertension.  Indeed,  myriad  toxic  effects  of  NO  are  recognized  due  to  the  subsequent
generation of ONOO−  [121, 122] involved in inflammatory conditions [123, 124], neurodegenerative diseases [125,
126] and cardiovascular diseases [118, 120]. Therefore, NADPH oxidase- O2

−• may not be an oxidant as relevant in
hypertension as ONOO−.

Similarly,  the  Cyt-C  oxidase  is  a  functionally  competent  ONOO−  reductase.  It  is  suggested  an  enhanced  NO
production through a positive feedback mechanism for NO2

−-derived mitochondrial NO on a Cyt-C oxidase subunit.
This protein recruitment is in state-dependent hypoxia; therefore, Cyt-C functional role is in hypoxic signaling events
[127].

CONCLUSION

Manifold studies have proved or suggested the control and influences on blood pressure by NOS isoenzymes and
have made correlation between NOS-NO and ischemic angina. This is because both, hypertension and ischemic angina,
are part of a major MS that affect not just NO production by NOS, but also enzymes pathways, such Cyt-C, important
to strictly anoxic conditions [16, 18, 128]. Due to this, it is still important to generate correlations between the many
enzymes pathways already described on literature and angina for a better and more complete understanding of CVD.

In the vascular endothelium, BH4 mediates coupling of O2 reduction to heme-catalyzed L-arginine oxidation to form
NO and L-citrulline [50]. In patients with MS, there is an inherently systemic inflammation and high risk of CHD [50].
The usual result is atherosclerosis in the coronary arteries leading to NADPH oxidase functioning and ROS products.
Beyond ROS strengthen vascular lesions and NADPH oxidase functions, O2

−• and ONOO− oxide BH4. Even though the
pathophysiologic control of endothelial BH4 levels in humans is poorly known, assembling the information described in
the literature databases turns possible to have a better insight about the NO roles in cardiovascular symptoms such as
angina.

LIST OF ABBREVIATIONS

BH4 = Tetrahydrobiopterin

cGMP = Cyclic guanosine monophosphate

CHD = Coronary heart disease

CNS = Central nervous system

Cyt-C = Cytochrome C

eNOS = Endothelial - Nitric Oxide Synthase
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GC = Guanylyl cyclase

iNOS = Inducible - Nitric Oxide Synthase

MB = Methylene Blue

mRNA = Messenger RNA

MS = Metabolic Syndrome

mtNOS = Mitochondrial - Nitric Oxide Synthase

NADPH = Nicotinamide Adenine Dinucleotide Phosphate Hydrogen

NCBI = National Center for Biotechnology Information

nNOS = Neuronal - Nitric Oxide Synthase

NO = Nitric Oxide

NO2
− = Inorganic nitrite

NO3
− = Nitrate

NOS = Nitric Oxide Synthase

O2 = Molecular oxygen

O2
−• = Superoxide anion

ONOO− = Peroxynitrite

ROS = Reactive Oxygen Species

XO = Xanthine oxidase

XOR = Xanthine oxidoreductase
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