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Abstract: Animal models that mimic cardiovascular diseases are indispensable tools for understanding the mechanisms 

underlying the diseases at the cellular and molecular level. This review focuses on various methods in preclinical research 

to create small animal models of cardiac diseases, such as myocardial infarction, dilated cardiomyopathy, heart failure, 

myocarditis and cardiac hypertrophy, and the related stem cell treatment for these diseases  
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INTRODUCTION 

 Cardiovascular disease is considered the major cause of 

morbidity and mortality throughout the world. Over the past 

several years, great achievement has been made in the treat-

ment/management of cardiovascular diseases, which have 

depended on the use of experimental animal models. With 

the use of disease models in preclinical research, a large 

amount of information has been generated, which has out-

lined the pathogenesis, progression and mechanisms under-

lying cardiovascular diseases at the cellular and molecular 

level. This has allowed the development of many effective 

treatment strategies. 

 Cardiovascular disease models have been developed in 

many species, including large animals such as swines and 

dogs [1, 2], as well as, small animals such as rats and mice 

[3-5]. Small animal models are more applicable to research 

work compared to large animal models due to their inexpen-

siveness, convenience in handling and the vast amount of 

scientific literature available [6]. In this review, we mainly 

focus on various methods used by investigators to create 

small animal models of cardiac disease, such as myocardial 

infarction (MI), dilated cardiomyopathy (DCM), heart failure 

(HF), myocarditis and cardiac hypertrophy (CH) and the 

related stem cell treatment for these diseases. 
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1. ANIMAL MODEL OF MYOCARDIAL INFARC-

TION (MI) 

1.1. Introduction 

 MI is one of the leading causes of death in the world, 
induced by a blockage in coronary arteries as a result of  
atherosclerosis or thrombosis [7]. It is characterized by ne-

crosis of myocardiocytes due to a reduction in blood supply. 
The conventional clinical treatments, such as percutaneous 
coronary intervention, coronary-artery bypass graft surgery 
and anti- or dissolution- thrombotic therapy can reduce death 

rate to a certain extent [8]. Heart transplantation is greatly 
restricted due to the limited source of donor hearts. There-
fore, more effective approaches are urgently needed to treat 
this disease.  

 On the basis of animal models established in experimen-

tal research, the mechanisms underlying the development of 
cardiovascular diseases at the cellular and molecular level 
have been clarified and the potential treatment options using 
protein, gene and stem cell therapy have been proposed, 

which have achieved satisfactory results [9-17].  

1.2. Animal Models of MI 

 MI in animal models can be mainly achieved by two 
methods. The first is to fully block or partially narrow the 
coronary artery, which often leads to acute ischemia. This 
can be achieved by a surgical procedure or by drug interven-
tion. The other method is to induce atherosclerosis in coro-
nary arteries, which would more closely mimic the disease 
progression in humans; however, this approach is rarely 
adopted in research studies, since it is time-consuming [18]. 
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In this section we focus on the commonly used methods to 
create MI in small animals. 

1.2.1. Surgical Ligation Model 

 Occluding different regions of the coronary arteries via a 
thoracotomy to induce MI has been used for decades [19]. 
Ligation of the left anterior descending coronary artery 
(LAD) to create anterior wall infarction of the left ventricle 
(LV) has been described by many workers [19-23]. The sur-
gical procedure can be divided into three steps. In brief, the 
heart of an animal under anaesthesia is exposed following a 
left thoracotomy at the fourth intercostal space. The pericar-
dium is carefully broken and the LAD ligated with a suture 
placed just distally (1mm) from tip of the left auricle. The 
procedure is considered successful if the electrocardiogram 
(ECG) shows ST-segment elevation and the anterior wall of 
the left ventricle becomes whitish. Finally, the lungs are in-
flated and the chest closed.  

 This permanent ligation of the LAD can cause irreversi-
ble damage to the myocardium, which is stable and easily 
reproduced. It has been extensively employed in studies on 
MI therapy using techniques such as; cell implantation,  
genetic modification and the administration of cytokines [24-
28]. Further ligation of the LAD can also produce a HF 
model or an ischemia–reperfusion model by subsequently 
removing the occlusion [29, 30]. However, the difficulty  
in operating on small rodents, particularly mice and the  
relatively high surgical mortality, due to the size of the 
wound created has to be addressed. In addition, the coronary 
ligation procedure often gives rise to apical aneurysmatic 
infarcts of variable size. 

1.2.2. Cauterization and Cryo-Injury Model 

 The surgical procedures for cauterization or cryo-injury-
induced MI have been previously studied using various ani-
mal models. In brief, the heart is exposed following intercos-
tal thoracotomy. Cauterization or cryo-injury is induced with 
an electrocoagulation knife for 1 to 2 seconds or a cryoprobe 
for 10s, respectively, on the anterior LV free wall [31, 32]. 
The position of the probe can be set accurately using the 
pulmonary artery as an anatomical landmark. 

 The MI caused by cauterization or cryo-injury is stable 
and easily produced in a short period of time, without the 
interference of the coronary arteries collateral circulation 
[31]. It is particularly suitable for use in small animal such as 
the mouse. The necrosis of myocardiocytes is ascribed to 
tissue damage caused by burning or the ultra-low tempera-
ture. Unfortunately, cauterization or cryo-injury is not guar-
anteed to induce myocardium ischemia [33] or tissue damage 
that closely mimics the natural ischemia-initiated infarction. 
In fact, myocardial injury from cauterization or cryo-injury 
shows pathophysiological changes that are not associated 
with myocardial infarction [33]. 

1.2.3. Balloon Occlusion Model 

 The balloon occlusion model was developed from percu-
tanous translaminal coronary angioplasty and was applied in 
large animal models [6, 34]. Cohen et al. developed this oc-
clusion model in small animals by encircling a superficial 
branch of the rabbit left coronary artery with a balloon oc-
cluder [6]. Briefly, after left thoracotomy, the open end of a 
balloon occluder is placed around the branch of the exposed 

left coronary artery (LCA). The occluder is connected to a 
vacuum pump or compressed air to control balloon inflation 
and coronary occlusion. The use of this model reduces mor-
tality and the size of the surgical wound when compared 
with LAD ligation-induced MI. The procedure is reliable and 
reproducible, allowing the accurate positioning of the bal-
loon, making it the first choice model to induce post-infarct 
reperfusion. However, balloon angioplasty requires a high 
level of surgical expertise and is not easily applicable in 
small animals without extensive training [35-38]. 

1.2.4. Pharmacologically-Induced Model 

 Drug-induced myocardial ischemia is a convenient pro-
cedure, since it does not require complicated surgery. Isopro-
terenol, adriamycin and ergonovine have been often used to 
induce MI. Signal et al. induced myocardial ischemia in rats 
with isoproterenol (a synthetic -adrenergic agonist) [39]. 
Similarly, Chagoya et al. developed a rat MI model by utilis-
ing isoproterenol [40]; and Arteaga de Murphy and his group 
successfully duplicated the MI model in rats with a subcuta-
neous injection of isoproterenol [41]. While, Arnolde et al. 
created an ischemia model in rabbits by the intraperitoneal 
injection of adriamycin [42]. 

 Drug-induced ischemia can be easily achieved, since it 
increases myocardial oxygen consumption or induces coro-
nary artery spasm to reduce blood flow; however, drug 
safety and the difficulty in accurately positioning the infarct 
region make this model rarely used in clinical research. 

1.3. The use of Stem Cells to Study MI 

 Studies using myocardial infarct animal models have 
indicated that transplantation of mesenchymal stem cells 
(MSC) [23, 43-45], umbilical cord blood cells [46, 47], 
bone-marrow-derived haematopoietic stem cells [32, 48], 
skeletal myoblasts [49], endothelial progenitor cell (EPC) 
[50], cardiac stem cells [51, 52], embryonic stem cells (ESC) 
[25], or induced-pluripotent stem cell [53] have the potential 
to improve the function of ventricular muscle after MI. 
Clinical trials have also produced some encouraging results. 
However, the current experimental evidence suggests that 
the benefits of cell therapy are modest. Several recent re-
views have summarized systematically the application of 
stem cell following MI [54, 55]. The past decade has shown 
that translating the potential benefit of stem cell therapy into 
actual clinical practice still needs a lot of work and many 
barriers would need to be overcome before this therapy can 
attain its full potential. 

2. ANIMAL MODEL OF DILATED CARDIOMYOPA-

THY (DCM) 

2.1. Introduction  

 DCM is a primary myocardial disease characterized by 
chamber dilation associated with impaired systolic and dia-
stolic function [56, 57]. It starts from asymptomatic LV dila-
tation or impaired systolic function, exercise-induced symp-
toms, and finally to overt congestive heart failure (CHF). 
The onset of DCM can be linked to viral infection, genetic 
abnormalities, and autoimmune mechanisms [58]. A number 
of animal models of DCM have been developed to elucidate 
the mechanism responsible for the pathophysiological fea-
tures of DCM and to establish potential treatment strategies. 
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This section of the review focuses on viral infection, genetic 
abnormalities, and autoimmune animal model and the appli-
cation of stem cells to treat DCM.  

2.2. Immunization Model of DCM 

 Increasing evidence shows that a large proportion of 
DCM cases are mediated by autoimmune processes [59, 60]. 
Various antimyocardial antibodies circulating in the serum 
are associated with myocyte injury, which is detected in 85% 
of DCM patients [61]. Furthermore, familial occurrence of 
DCM with the presence of autoantibodies and abnormal cy-
tokine profiles in relatives with asymptomatic LV enlarge-
ment can account for 20–30% of cases [62, 63], suggesting 
the involvement of abnormal humoral and cellular immunity 
in the early development of the disease.  

 1-ECII the anti- 1-adrenergic receptor antibody against 
the second extracellular receptor loop represents a potent 
“self-antigen” that induces DCM [64, 65]. Matsui et al. using 
a rabbit model were the first to presented data on the devel-
opment of biventricular dilatation. They found an upregula-
tion of total cardiac -AR ( -adrenergic receptor) following 
immunization with 1-ECII-homologous peptide [66]. In-
traperitoneal injection of blood lymphocytes either from 
immunized anti- 1-ECII-positive rabbits [67], or from anti-

1-AR-positive DCM patients [68] into immunodeficient 
mice can avoid the expected immune reaction against rabbit 
or human non-self proteins, which can lead to the early stage 
of cardiac dilatation. Treatment of mice with certain human 
leukocyte antigen alleles can also induce autoimmune myo-
carditis followed by the subsequent development of DCM 
[69]. Daniel et al. induced DCM in a mouse model with the 
application of KXXS-motif [70]. The autoimmune DCM 
model can also be created by viral infection, immunization 
with heart-specific autoantigens, or from genetically predis-
posed strains. 

2.3. Viral Infection Model of DCM 

 Viral myocarditis is a common cause of acquired DCM 
in humans. The pathogenesis of viral myocarditis and the 
pathophysiological features of DCM depend on the viral 
strain and the genetic background [71]. 

 Transduction of Coxsackie virus genomic constructs with 
a cardiac-specific promoter in transgenic mice induced DCM 
with features consistent with human cardiomyopathy [72]. 
Recent evidence showed that Coxsackie virus myocarditis 
can lead to DCM [73]. Acute coronavirus infection can also 
results in virus-induced myocarditis and CHF. After infec-
tion, nearly half of the rabbits showed an increased heart 
weight and heart weight-to-body weight ratios, biventricular 
dilation, myocyte hypertrophy, myocardial fibrosis, and 
myocarditis similar to the development of DCM [74]. LP-
BM5 murine AIDS (MAIDS) retrovirus induced DCM in the 
absence of chronic cardiac inflammation, suggesting MAIDS 
retroviral infection can lead to DCM without myocarditis 
[75].  

2.4. Genetic Abnormality Models of DCM 

 Approximately 20% of DCM patients have a gene muta-
tion [62], which affects the myosin heavy chain [76], cardiac 
actin [77], tropomyosin [78], or troponin [79], inducing a 

functional impairment of the referred proteins. Recent inves-
tigations have focused on the genetic mechanisms and stress 
pathways [76], cytoskeletal abnormalities [77] and signaling 
pathways for CH and HF in DCM [77]. Yasuhiro et al. fo-
cused on the mouse models of DCM, together with commen-
tary on the naturally occurring DCM in the hamster [80] 
based on the subcellular localization and the potential func-
tional importance of the gene products involved.  

2.5. Stem Cell Therapy for DCM 

 A number of experimental studies and clinical trials sup-
port cellular cardiomyoplasty as a promising therapeutic 
strategy to improve cardiac function after acute MI [81, 82], 
however, much less information is available on the therapeu-
tic potential of MSCs for DCM. Noritoshi et al. investigated 
the effect of MSCs on DCM in animals following immuniza-
tion [83]. The results showed that MSC transplantation in-
creased capillary density and decreased the collagen volume 
fraction in the myocardium, resulting in decreased LV end-
diastolic pressure. Bone marrow-derived mononuclear cell 
therapy in DCM limited cellular apoptosis, inflammatory and 
oxidative responses, up-regulated the expressions of Cx43, 
PKC, and energy transcription factors and improved LV 
function [84]. In addition, intracoronary administration of 
bone marrow-derived progenitor cells improved coronary 
microvascular function in DCM [85]. Hence, stem cell trans-
plantation has great potential as a new therapeutic strategy 
for the treatment of DCM. 

3. ANIMAL MODELS OF HEART FAILURE (HF) 

3.1. Introduction 

 HF is associated with 50% survival at 5 years. The use of 
animal models is indispensable in understanding the patho-
physiology of HF and to evaluate the efficacy and efficiency 
of novel therapeutic approaches such as gene therapy, the 
use of mechanical devices and new surgical procedures. This 
section presents the most common in vivo models used to 
study HF. 

3.2 Models of acute HF 

3.2.1. Hydraulic Occluder and Ameroid Constrictor  

 These methods allow complete or partial occlusion of 
coronary artery branches in animal models. Hence, they are 
applicable to induce HF [86, 87], and coronary stenosis for 

the investigation of hibernating myocardium. Briefly, a left 
anterolateral thoracotomy is performed followed by an inci-
sion of the pericardium; a branch of the LCA is exposed and 
the hydraulic occluder placed around the vessel. The oc-

cluder is then inflated to induce partial stenosis or complete 
occlusion. An ultrasonic flow probe can be placed distally  
to the occluder to control the degree of occlusion and record 
the downstream flow through the LCA [88]. An ameroid 

constrictor can also be implanted in a similar way. At body 
temperature, the casein plastic ring around the vessel will 
gradually narrow, due to the hygroscopic property of the 
material. The complexity of placing the hydraulic occluder 

and ameroid constrictor mean that these procedures are not 
appropriate for use in small animal models for investigating 
MI-induced HF [86, 87]. 
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3.2.2. Coronary Artery Ligation 

 Pfeffer et al. created HF in rats by coronary artery liga-
tion [89]. Rats with an infarction size greater than 46% de-
veloped CHF after 21 days, with symptoms of elevated fill-
ing pressures, reduced cardiac output, and a minimal capac-
ity to respond to pre- and after-load stress. The impairment 
of LV function was closely associated with the extent of 
myocardial loss [89]. Animal mortality from HF seems to be 
strain-dependent, since Sprague-Dawley and Lewis rats have 
a mortality rate of 36% and 16%, respectively [90]. 

3.2.3. Coronary Artery Embolisation 

 Coronary artery embolisation-induced HF is based on 

intracoronary embolisation with microspheres [91], agarose 
or polystyrene beads or the intracoronary injection of throm-
bin and autogenous blood with fibrinogen [92]. Sabbah et al. 
used dogs that underwent 3 to 9 catheter-mediated intracoro-

nary embolisation 1–3 weeks apart [90]. The embolisation 
was discontinued when the ejection fraction of the LV was 
less than 35%. In this model coronary artery embolisation 
increased the LV end-diastolic pressure, which was accom-

panied by a significant rise in pulmonary artery wedge pres-
sure and systemic vascular resistance. Three months after the 
embolisation, patchy myocardial fibrosis and LV hypertro-
phy were observed in the heart. There was also an increase in 

plasma levels of atrial natriuretic peptide and norepineph-
rine, as well as, a reduction in the number of -AR and L-
type calcium channels and the activity and protein levels of 
SR Ca2+-ATPase [93]. 

 This model can mimic the clinical situation, of patients 
with HF and acute coronary syndrome, since embolisation-
induced atherosclerotic and thrombotic debris are deposited 
into the coronary microcirculation. However, one disadvan-

tage of the model is the difficulty in accurately controlling 
the location or the length of coronary artery occlusion. 

3.2.4. Models of Chronic Heart Failure 

 Incomplete narrowing of coronary arteries similar to that 
observed in the coronary artery occlusion animal model has 
been established to mimic chronic HF. In brief, a thora-

cotomy is performed on the chosen animal model; a probe or 
copper wire is inserted into the epicardium along the LCA. 
The LCA is ligated with the probe inside 1-2 mm from its 
origin. The probe is then removed, resulting in an average 

reduction in the luminal diameter by 42% [94]. The ST seg-
ment of the ECG should be transiently elevated during coro-
nary occlusion if the operation is successful. An excessive 
coronary artery occlusion may induce persisting ST segment 

elevation even after removal of the probe. HF may occur as a 
result of chronic cardiac ischemia [95]. The coronary liga-
tion procedure may inevitably include the ligature of some 
muscle mass, which could induce vessel stenosis. The 

maximal resting coronary blood flow can decrease by 43% 
5–7 days following the operation [96]. Reparative fibrosis, 
myocytolytic necrosis, as well as, myocyte hypertrophy can 
also occur [97]. 

 This model lacks predictability and reliability and the 
degree and progression of the stenosis cannot be adjusted. 
After several weeks a complete occlusion of the coronary 
artery can develop [98]. Interestingly, the gradually increas-

ing stenosis may prompt the formation of collateral vessels, 
similar to the situation observed in some patients. 

3.3. Stem Cells Therapy for HF 

 Current therapies aim largely to attenuate the pathologi-
cal remodelling that occurs after injury and to reduce risk 
factors for HF. Studies in animal models indicate that trans-
plantation of bone-marrow derived stem cells, MSC, EPC or 
autologous umbilical cord blood mononuclear cells [99] 
have the potential to improve the function of ventricular 
muscle after HF. A number of studies showed improvement 
in cardiac function when bone marrow-derived stem cells 
were directly implanted. However, limited or no differentia-
tion of bone marrow cells to cardiovascular cell types [100, 
101] suggested that the beneficial effect was independent of 
tissue regeneration [102]. Some groups have shown that EPC 
has great promise as a potential therapeutic agent [103, 104]. 
However, further research is required to enhance the thera-
peutic efficiency of EPCs in HF.  

4. ANIMAL MODELS OF MYOCARDITIS  

4.1. Introduction 

 Myocarditis can be defined as inflammation of heart 
muscle. It resembles a heart attack without the blockage of 
coronary artery. Myocarditis is often induced by a viral in-
fection such as parvovirus B19 or less commonly non-viral 
pathogens such as borrelia burgdorferi (Lyme disease) or 
trypanosoma cruzi, or as a hypersensitivity response to drugs 
[105]. Myocarditis is, therefore, an infection of the heart, 
with inflammatory infiltrate, causing damage to the heart 
muscle [106], which may or may not result in the death of 
heart tissue. 

4.2. Experimental Autoimmune Myocarditis (EAM) 

Animal Model  

 EAM can be induced in susceptible mice by immuniza-
tion with murine cardiac myosin or cardiac myosin peptides 
[107, 108], or by adoptive transfer of myosin-stimulated T 

cells [109]. Myosin-induced EAM is a model of inflamma-
tory heart disease initiated by CD4+ T cells [109]. The im-
mune-mediated cardiac damage could play a role in the 
pathogenesis of a subset of post-infectious human cardiomy-

opathies [110]. It is also possible to induce myocarditis in 
Lewis rats by immunization with cardiac myosin [111] or by 
adoptive transfer of T cells stimulated by specific peptides 
from cardiac myosin [112]. 

4.2.1. Induction of EAM by Active Immunization with  
Cardiac Myosin 

 The procedure to produce the animal model of EAM by 
active immunization with cardiac myocin has previously 
been described [107]. The immunogen is injected subcutane-
ously into mouse; 7 days later a second dose of immunogen 
emulsified in Complete Freund’s adjuvant (CFA) is adminis-
tered; 21 days after the first immunization the mouse is 
euthanized. The heart is immediately removed, fixed in for-
malin for 24 hours, stained and a histopathological assess-
ment performed to ascertain whether EAM is established. A 
rapid determination of the induction of EAM can be also 
made by analyzing specific serum markers for cardiac injury. 



Small Animal Models and Stem Cell Therapy The Open Cardiovascular Medicine Journal, 2010, Volume 4    235 

Cardiac troponin I (cTnI) and cardiac troponin T (cTnT), are 
two proteins associated with the myocyte contractile appara-
tus, which will be released into the serum when myocytes 
are injured and can serve as markers of myocyte injury. cTnI 
is highly sensitive and specific for myocarditis in mice 17 – 
21 days after immunization. The sensitivity of cTnT meas-
urement is maximal at day 16. Both cTnI and cTnT meas-
urements are superior to the measurement of CK-MB for the 
detection of murine EAM. 

4.2.2. Induction of EAM by Adoptive Transfer of Cardiac 
Myosin-Stimulated T Cells 

 The protocol for EAM induction with adoptive transfer 
of cardiac myosin-stimulated T cells has been reported [113, 
114]. In breif, the donor mice (6 to 8 weeks old) is immu-
nized with cardiac myosin emulsified in CFA, the spleens 
are harvest from these mice 12-14 days after the first immu-
nization. The spleens are incubated in sterile tissue culture 
flasks for 72 hours at 37°C. Lymphocytes are separated from 
the red blood cells and dead cells by Ficoll-Hypaque gradi-
ent centrifugation. The T cells are enriched and the B cells 
removed by cytotoxic elimination using an anti–MHC class 
II antibody and complement. T cells are injected intrave-
nously into the tail veins of recipient SCID mice; 21 days 
after the first immunization the mouse is euthanized. The 
heart is immediately removed, fixed in formalin for 24 
hours, stained and a histopathological assessment performed 
to ascertain whether EAM is established. 

 This model is ideal for studying the role of specific cellu-
lar effectors on the induction and pathogenesis of EAM, but 
it is only applicable to SCID mice, which have no functional 
B and T cells. 

4.2.3. Induction of EAM by Active Immunization with  
Bordetella 

 The protocol to induce EAM by active immunization 
with bordetella is known [111]. In brief, an emulsion of the 
selected immunogen (cardiac myosin or cardiac myosin pep-
tide) is prepared. On day 0 and 7, an appropriate volume of 
immunogen is subcutaneously injected into female Lewis 
rats. A solution of B. pertussis is prepared in PBS and in-
jected into the rats intravenously on day 1 and 3; 21 days 
after the first immunization the rat is euthanized. The heart is 
immediately removed, fixed in formalin for 24 hours, stained 
and a histopathological assessment performed to ascertain 
whether EAM is established. 

 The injection of cardiac myosin and B. pertussis is the 
only way to induce EAM in rats, allowing the comparative 
study of the mechanism underlying disease development.  

4.3. Virus-Induced Myocarditis Animal Model 

 Humans infected with common viruses such as; adenovi-
rus, enterovirus, Epstein-Barr virus, human herpes virus 6, 
parvovirus B19 and cytomegalovirus may have activated T-
cells and associated cytokine mechanisms, [115] resulting in 
autoimmune myocarditis [116]. Viruses induce the initial 
myocardial injury, and can cause continuous low grade in-
flammation and enduring myocardial damage and reparative 
fibrosis. Inflammatory cells also produce matrix-degrading 
proteases [117, 118], leading to LV dilatation and cardiac 
dysfunction [119]. 

 Similar to autoimmune myocarditis, direct virus injection 
can cause myocarditis in three phases. The initial phase fre-
quently passes without symptoms, since the initial damage is 
often prevented by the innate immune response [120]. The 
second phase results from immune dysregulation, triggered 
by the initial cardiomyocyte injury. The initial cellular and 
humoral immune responses may improve the outcome dur-
ing phase 1; conversely, they are responsible for the harmful 
effect during phase 2. This is in part due to molecular mim-
icry [121], which is caused by mimicked epitopes shared 
between the viral and cardiac antigens [122]. Finally, in the 
third phase, a typical DCM develops as a result of extensive 
myocardial injury. 

 It is, however, difficult to determine the virus dose/ 
concentration required to induce myocarditis and detect  
the inflammation of the myocardium during the first phase, 
limiting its application in preclinical research. 

4.4. Stem Cell Therapy for Myocarditis 

 Stem cells play a critical role in the pathogenesis and 
outcome of myocarditis. Recent studies have described the 
role of different stem cell types and subtypes and their prod-

ucts in mediating cardiac dysfunction in myocarditis. Kania 
G et al. in vitro culture-expanded a specific population of 
bone marrow-derived prominin-1-expressing progenitor cells 
from healthy heart tissue and injected these cells intrave-

nously into autoimmune-myocarditis animal model [123]. 
MSCs also have angiogenic, myogenic, and paracrine ac-
tions in the treatment of EAM. Okada H et al. determined 
whether MSC transplantation attenuated EAM [124]. Their 

results showed that MSC transplantation reduced the severity 
of EAM by inducing neovascularization and inhibiting in-
flammatory cytokine production. Weener et al. investigated 
the effect of delivering spleen-derived EPC into a rat model 

of inflammatory-mediated myocardial damage [125]. They 
found that EPC caused a functional improvement in cardiac 
performance evident by higher fractional shortening, reduced 
scar tissue and thickened ventricular walls. Wang et al. used 

ESC to attenuate viral myocarditis [126]. They found that a 
tail vein injection of ESC significantly increased the survival 
of viral myocarditis mice and decreased the necrosis  
and infiltration of inflammatory cells. These studies taken 

together, demonstrate the potential stem cell therapy has in 
treating myocarditis. 

5. ANIMAL MODEL OF CARDIAC HYPERTROPHY 

(CH)  

 CH is an adaptive response of the heart to pressure over-

load. However, long term hypertrophy of cardiomyocytes 
can not maintain normal function and eventually HF will 
develop. CH is a common feature of the failing myocardium 
in the progression of some cardiovascular diseases (e.g. hy-

pertension, MI and HF) and is closely related to the patho-
logical changes [127-130]. 

 Many investigators have studied the mechanism underly-
ing CH [131-133]. Recent research has showed that CH is a 
complicated and dynamic process. It is associated with many 
genetic and molecular changes related to the regulation of a 
series of signaling pathways, expression of some cardiac 
fetal genes, and enhanced of protein synthesis. Interestingly, 
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the increase in cardiac protein synthesis directly causes the 
enlargement of cardiomyocytes [134,135].  

 Various chemical factors, as well as, mechanical stimula-
tion contribute to the development of the hypertrophic re-
sponse, which is also the basis of establishing cell and ani-
mal models [136-138]. Many laboratories induce hypertro-
phic phenotypes on neonatal or adult cardiomyocytes using 
mediators such as endothelin-1, angiotensin II and leptin 
[139-142]. Akimasa Koga and his group constructed an ade-
novirus vector carrying human wild-type caveolin-3 gene, 
which was able to prevent phenylephrine and endothelin-1-
induced hypertrophic responses [143]. While, Galindo and 
his colleagues compared the transcriptional difference be-
tween isoproterenol-induced and exercise-induced CH in 
mice [144]. 

 There have been a few reports on stem cell therapy fol-
lowing CH. In general, CH can be suppressed as an accom-
panying symptom following ischemic injury or HF during 
treatment. Our team has found that the post-infarct hypertro-
phic phenotype can be inhibited after erythropoietin treat-
ment, which activated stem cell mobilization and migrate to 
the infarcted heart [145]. 

SUMMARY 

 With the use of small animal disease models in preclini-
cal research, workers have aquirred a large amount of infor-
mation on the pathogenesis/progression of cardiovascular 
disease, which has aided the development of effective treat-
ment options. These animal models are effective scientific 
tools to study the molecular mechanisms of stem cell based 
therapies for cardiovascular diseases, which potentially pro-
vide a powerful approach for discovering new drugs.  

ABBREVIATIONS 

CH = Cardiac hypertrophy 

cTnI = Cardiac troponin I 

cTnT = Cardiac troponin T 

CFA = Complete Freund’s adjuvant 

CHF = Congestive heart failure 

CK-MB = Creatine kinase-MB 

DCM = Dilated cardiomyopathy 

ECG = Electrocardiogram 

EPC = Endothelial progenitor cell 

EAM = Experimantal autoimmune myocarditis 

ESC = Embryonic stem cell  

HF = Heart failure 

LAD = Left anterior descending coronary artery 

LCA = Left coronary artery 

LV = Left ventricle 

MHC = Major histocompatibility complete 

MSCs = Mesenchymal stem cells 

MAIDS = Murine acquired immune deficiency  
syndrome 

MI = Myocardial infarction 

PBS = Phosphate buffered saline 

PKC = Protein kinase C 

SCID = Severe combined immunodeficiency 

SR Ca
2+

  = Sarcoplasmic reticulum Ca
2+

 ATPase 
ATPase 

1-ECII = Anti- 1-adrenergic receptor antibody against 
the second extracellular receptor loop 

-AR = Beta adrenergic receptor 
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